IE 11 is not supported. For an optimal experience visit our site on another browser.

An excerpt from Eric Schmidt and Jared Cohen's "The New Digitial Age"

Chapter 1 Our Future Selves
978-0-307-95713-91
978-0-307-95713-91

Chapter 1

Our Future Selves

Soon everyone on Earth will be connected. With five billion more people set to join the virtual world, the boom in digital connectivity will bring gains in productivity, health, education, quality of life and myriad other avenues in the physical world—and this will be true for everyone, from the most elite users to those at the base of the economic pyramid. But being “connected” will mean very different things to different people, largely because the problems they have to solve differ so dramatically. What might seem like a small jump forward for some—like a smart phone priced under $20—may be as profound for one group as commuting to work in a driverless car is for another. People will find that being connected virtually makes us feel more equal—with access to the same basic platforms, information and online resources—while significant differences persist in the physical world. Connectivity will not solve income inequality, though it will alleviate some of its more intractable causes, like lack of available education and economic opportunity. So we must recognize and celebrate innovation in its own context. Everyone will benefit from connectivity, but not equally, and how those differences manifest themselves in the daily lives of people is our focus here.

-

Increased Efficiency

Being able to do more in the virtual world will make the mechanics of our physical world more efficient. As digital connectivity reaches the far corners of the globe, new users will employ it to improve a wide range of inefficient markets, systems and behaviors, in both the most and least advanced societies. The resulting gains in efficiency and productivity will be profound, particularly in developing countries where technological isolation and bad policies have stymied growth and progress for years, and people will do more with less.

The accessibility of affordable smart devices, including phones and tablets, will be transformative in these countries. Consider the impact of basic mobile phones for a group of Congolese fisherwomen today. Whereas they used to bring their daily catch to the market and watch it slowly spoil as the day progressed, now they keep it on the line, in the river, and wait for calls from customers. Once an order is placed, a fish is brought out of the water and prepared for the buyer. There is no need for an expensive refrigerator, no need for someone to guard it at night, no danger of spoiled fish losing their value (or poisoning customers), and there is no unnecessary overfishing. The size of these women’s market can even expand as other fishermen in surrounding areas coordinate with them over their own phones. As a substitute for a formal market economy (which would take years to develop), that’s not a bad work-around for these women or the community at large.

Mobile phones are transforming how people in the developing world access and use information, and adoption rates are soaring. There are already more than 650 million mobile-phone users in Africa, and close to 3 billion across Asia. The majority of these people are using basic-feature phones—voice calls and text messages only—because the cost of data service in their countries is often prohibitively expensive, so that even those who can buy web-enabled phones or smart phones cannot use them affordably. This will change, and when it does, the smart-phone revolution will profoundly benefit these populations.

Hundreds of millions of people today are living the lives of their grandparents, in countries where life expectancy is less than sixty years, or even fifty in some places, and there is no guarantee that their political and macroeconomic circumstances will improve dramatically anytime soon. What is new in their lives and their futures is connectivity. Critically, they have the chance to bypass earlier technologies, like dial-up modems, and go directly to high-speed wireless connections, which means the transformations that connectivity brings will occur even more quickly than they did in the developed world. The introduction of mobile phones is far more transformative than most people in modern countries realize. As people come online, they will quite suddenly have access to almost all the world’s information in one place in their own language. This will even be true for an illiterate Maasai cattle herder in the Serengeti, whose native tongue, Maa, is not written—he’ll be able to verbally inquire about the day’s market prices and crowd-source the whereabouts of any nearby predators, receiving a spoken answer from his device in reply. Mobile phones will allow formerly isolated people to connect with others very far away and very different from themselves. On the economic front, they’ll find ways to use the new tools at their disposal to enlarge their businesses, make them more efficient and maximize their profits, as the fisherwomen did much more locally with their basic phones.

What connectivity also brings, beyond mobile phones, is the ability to collect and use data. Data itself is a tool, and in places where unreliable statistics about health, education, economics and the population’s needs have stalled growth and development, the chance to gather data effectively is a game-changer. Everyone in society benefits from digital data, as governments can better measure the success of their programs, and media and other nongovernmental organizations can use data to support their work and check facts. For example, Amazon is able to take its data on merchants and, using algorithms, develop customized bank loans to offer them—in some cases when traditional banks have completely shut their doors. Larger markets and better metrics can help create healthier and more productive economies.

And the developing world will not be left out of the advances in gadgetry and other high-tech machinery. Even if the prices for sophisticated smart phones and robots to perform household tasks like vacuuming remain high, illicit markets like China’s expansive “shanzhai” network for knock-off consumer electronics will produce and distribute imitations that bridge the gap. And technologies that emerged in first-world contexts will find renewed purpose in developing countries. In “additive manufacturing,” or 3-D printing, machines can actually “print” physical objects by taking three-dimensional data about an object and tracing the contours of its shape, ultra-thin layer by ultra-thin layer, with liquid plastic or other material, until the whole object materializes. Such printers have produced a huge range of objects, including customized mobile phones, machine parts and a full-sized replica motorcycle. These machines will definitely have an impact on the developing world. Communal 3-D printers in poor countries would allow people to make whatever tool or item they require from open-source templates—digital information that is freely available in its edited source—rather than waiting on laborious or iffy delivery routes for higher-priced premade goods.

In wealthier countries 3-D printing will be the perfect partner for advanced manufacturing. New materials and products will all be built uniquely to a specification from the Internet and on demand by a machine run by a sophisticated, trained operator. This will not replace the acres of high-volume, lowest-cost manufacturing present in many industries, but it will bring an unprecedented variety to the products used in the developed world.

As for life’s small daily tasks, information systems will streamline many of them for people living in those countries, such as integrated clothing machines (washing, drying, folding, pressing and sorting) that keep an inventory of clean clothes and algorithmically suggest outfits based on the user’s daily schedule. Haircuts will finally be automated and machine-precise. And cell phones, tablets and laptops will have wireless recharging capabilities, rendering the need to fiddle with charging cables an obsolete nuisance. Centralizing the many moving parts of one’s life into an easy-to-use, almost intuitive system of information management and decision making will give our interactions with technology an effortless feel. As long as safeguards are in place to protect privacy and prevent data loss, these systems will free us of many small burdens—including errands, to-do lists and assorted “monitoring” tasks—that today add stress and chip away at our mental focus throughout the day. Our own neurological limits, which lead us to forgetfulness and oversights, will be supplemented by information systems designed to support our needs. Two such examples are memory prosthetics—calendar reminders and to-do lists—and social prosthetics, which instantly connect you with your friend who has relevant expertise in whatever task you are facing.

By relying on these integrated systems, which will encompass both the professional and the personal sides of our lives, we’ll be able to use our time more effectively each day—whether that means having the time to have a “deep think,” spending more time preparing for an important presentation or guaranteeing that a parent can attend his or her child’s soccer game without distraction. Suggestion engines that offer alternative terms to help a user find what she is looking for will be a particularly useful aid in efficiency by consistently stimulating our thinking processes, ultimately enhancing our creativity, not preempting it. Of course, the world will be filled with gadgets, holograms that allow a virtual version of you to be somewhere else, and endless amounts of content, so there will be plenty of ways to procrastinate, too—but the point is that when you choose to be productive, you can do so with greater capacity.

Other advances in the pipeline in areas like robotics, artificial intelligence and voice recognition will introduce efficiency into our lives by providing more seamless forms of engagement with the technology in our daily routines. Fully automated human-like robots with superb AI abilities will probably be out of most people’s price range for some time, but the average American consumer will find it affordable to own a handful of different multipurpose robots fairly soon. The technology in iRobot’s Roomba vacuum cleaner, the progenitor of this field of consumer “home” robots (first introduced in 2002), will only become more sophisticated and multipurpose in time. Future varieties of home robots should be able to handle other household duties, electrical work and even plumbing issues with relative ease.

We also can’t discount the impact that superior voice-recognition software will have on our daily lives. Beyond searching for information online and issuing commands to your robots (both of which are possible today), better voice recognition will mean instant transcription of anything you produce: e-mails, notes, speeches, term papers. Most people speak much faster than they type, so this technology will surely save many of us time in our daily affairs—not to mention helping us avoid cases of carpal tunnel syndrome. A shift toward voice-initiated writing may well change our world of written material. Will we learn to speak in paragraphs, or will our writing begin to mirror speech patterns?

Everyday use of gesture-recognition technology is also closer than we think. Microsoft’s Kinect, a hands-free sensor device for the Xbox 360 video-game console that captures and integrates a player’s motion, set a world record in 2011 as the fastest selling consumer-electronics device in history, with more than eight million devices sold in the first sixty days on the market. Gestural interfaces will soon move beyond gaming and entertainment into more functional areas; the futuristic information screens displayed so prominently in the film Minority Report—in which Tom Cruise used gesture technology and holographic images to solve crimes on a computer—are just the beginning. In fact, we’ve already moved beyond that—the really interesting work today is building “social robots” that can recognize human gestures and respond to them in kind, such as a toy dog that sits when a child makes a command gesture.

And, looking further down the line, we might not need to move physically to manipulate those robots. There have been a series of exciting breakthroughs in thought-controlled motion technology—directing motion by thinking alone—in the past few years. In 2012, a team at a robotics laboratory in Japan demonstrated successfully that a person lying in an fMRI machine (which takes continuous scans of the brain to measure changes in blood flow) could control a robot hundreds of miles away just by imagining moving different parts of his body. The subject could see from the robot’s perspective, thanks to a camera on its head, and when he thought about moving his arm or his legs, the robot would move correspondingly almost instantaneously. The possibilities of thought-controlled motion, not only for “surrogates” like separate robots but also for prosthetic limbs, are particularly exciting in what they portend for mobility-challenged or “locked in” individuals—spinal-cord-injury patients, amputees and others who cannot communicate or move in their current physical state.

-

More Innovation, More Opportunity

That the steady march of globalization will continue apace, even accelerate, as connectivity spreads will come as no surprise. But what might surprise you is how small some of the advances in technology, when paired with increased connection and interdependence across countries, will make your world feel. Instant language translation, virtual-reality interactions and real-time collective editing—most easily understood today as wikis—will reshape how firms and organizations interact with partners, clients and employees in other places. While certain differences will perhaps never be fully overcome—like cultural nuance and time zones—the ability to engage with people in disparate locations, with near-total comprehension and on shared platforms, will make such interactions feel incredibly familiar.

Supply chains for corporations and other organizations will become increasingly disaggregated, not just on the production side but also with respect to people. More effective communication across borders and languages will build trust and create opportunities for hardworking and talented individuals around the world. It will not be unusual for a French technology company to operate its sales team from Southeast Asia, while locating its human-resources people in Canada and its engineers in Israel. Bureaucratic obstacles that prevent this level of decentralized operation today, like visa restrictions and regulations around money transfers, will become either irrelevant or be circumvented as digital solutions are discovered. Perhaps a human-rights organization with staff living in a country under heavy diplomatic sanctions will pay its employees in mobile money credits, or in an entirely digital currency.

As fewer jobs require a physical presence, talented individuals will have more options available to them. Skilled young adults in Uruguay will find themselves competing for certain types of jobs against their counterparts in Orange County. Of course, just as not all jobs can or will be automated in the future, not every job can be conducted from a distance—but more can than you might think. And for those living on a few dollars per day, there will be endless opportunities to increase their earnings. In fact, Amazon Mechanical Turk, which is a digital task-distribution platform, offers a present-day example of a company outsourcing small tasks that can be performed for a few cents by anyone with an Internet connection. As the quality of virtual interactions continues to improve, a range of vocations can expand the platform’s client base; you might retain a lawyer from one continent and use a Realtor from another. Globalization’s critics will decry this erosion of local monopolies, but it should be embraced, because this is how our societies will move forward and continue to innovate. Indeed, rising connectivity should help countries discover their competitive advantage—it could be that the world’s best graphic designers come from Botswana, and the world just doesn’t know it yet.

This leveling of the playing field for talent extends to the world of ideas, and innovation will increasingly come from the margins, outside traditional bastions of growth, as people begin to make new connections and apply unique perspectives to difficult problems, driving change. New levels of collaboration and cross-pollination across different sectors internationally will ensure that many of the best ideas and solutions will have a chance to rise to the top and be seen, considered, explored, funded, adopted and celebrated. Perhaps an aspiring Russian programmer currently working as a teacher in Novosibirsk will discover a new application of the technology behind the popular mobile game Angry Birds, realizing how its game framework could be used to improve the educational tools he is building to teach physics to local students. He finds similar gaming software that is open source and then he builds on it. As the open-source movement around the world continues to gain speed (for governments and companies it is low cost, and for contributors the benefits are in recognition and economic opportunities to improve and enlarge the support ecosystems), the Russian teacher-programmer will have an enormous cache of technical plans to learn from and use in his own work. In a fully connected world, he is increasingly likely to catch the eyes of the right people, to be offered jobs or fellowships, or to sell his creation to a major multinational company. At a minimum, he can get his foot in the door.

Innovation can come from the ground up, but not all local innovation will work on a larger scale, because some entrepreneurs and inventors will be building for different audiences, solving very specific problems. This is true today as well. Consider the twenty-four-year-old Kenyan inventor Anthony Mutua, who unveiled at a 2012 Nairobi science fair an ultrathin crystal chip he developed that can generate electricity when put under pressure. He placed the chip in the sole of a tennis shoe and demonstrated how, just by walking, a person can charge his mobile phone. (It’s a reminder of how bad the problems of reliable and affordable electricity, and to a lesser extent short battery life, are for many people—and how some governments are not rushing to fix the electricity grids—that innovators like Mutua are designing microchips that turn people into portable charging stations.) Mutua’s chip is now set to go into mass production, and if that successfully brings down the cost, he will have invented one of the cleverest designs that no one outside the developing world will ever use, simply because they’ll never need to. Unfortunately, the level of a population’s access to technology is often determined by external factors, and even if power and electricity problems are eventually solved (by the government or by citizens), there is no telling what new roadblocks will prevent certain groups from reaching the same level of connectivity and opportunity as others.

Excerpted from The New Digital Age by Eric Schmidt and Jared Cohen Copyright © 2013 by Eric Schmidt. Excerpted by permission of Knopf, a division of Random House, Inc. All rights reserved. No part of this excerpt may be reproduced or reprinted without permission in writing from the publisher.